Higher Derivatives of L-series associated to Real Quadratic Fields

نویسنده

  • Lawrence Taylor
چکیده

This text is a modified version of a chapter in a PhD thesis [21] submitted to Nottingham University in September 2006, which studied an approach to Hilbert’s twelfth problem inspired by Manin’s proposed theory of Real Multiplication [7]. In [20] we defined and studied a nontrivial notion of line bundles over Quantum Tori. In this text we study sections of these line bundles leading to a study concerning theta functions for Quantum Tori. We prove the existence of such meromorphic theta functions, and view their application in the context of Stark’s conjectures and Hilbert’s twelfth problem. Generalising the work of Shintani, we show that (modulo a Conjecture 5.7) we can write the derivatives of L-series associated to Real Quadratic Fields in terms of special values of theta functions over Quantum Tori.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

Quantitative Nonvanishing of L-series Associated to Canonical Hecke Characters

We prove quantitative nonvanishing theorems for central values and central derivatives of L–series associated to canonical Hecke characters of imaginary quadratic fields. These results have applications to the study of Chow groups of Kuga-Sato varieties. Some key ingredients in the proofs are bounds for `-torsion in class groups obtained recently by Ellenberg and Venkatesh [EV], and subconvexit...

متن کامل

Computing Annihilators of Class Groups from Derivatives of L-functions

We computationally verify that certain group ring elements obtained from the first derivatives of abelian L-functions at the origin annihilate ideal class groups. In our test cases, these ideal class groups are connected with cyclic extensions of degree 6 over real quadratic fields.

متن کامل

The rationality of Stark-Heegner points over genus fields of real quadratic fields

We study the algebraicity of Stark-Heegner points on a modular elliptic curve E. These objects are p-adic points on E given by the values of certain p-adic integrals, but they are conjecturally defined over ring class fields of a real quadratic field K. The present article gives some evidence for this algebraicity conjecture by showing that linear combinations of Stark-Heegner points weighted b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006